Inference of mechanical states of intestinal motor activity using hidden Markov models
نویسندگان
چکیده
منابع مشابه
Visual Task Inference Using Hidden Markov Models
It has been known for a long time that visual task, such as reading, counting and searching, greatly influences eye movement patterns. Perhaps the best known demonstration of this is the celebrated study of Yarbus showing that different eye movement trajectories emerge depending on the visual task that the viewers are given. The objective of this paper is to develop an inverse Yarbus process wh...
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولStochastic variational inference for hidden Markov models
Variational inference algorithms have proven successful for Bayesian analysis in large data settings, with recent advances using stochastic variational inference (SVI). However, such methods have largely been studied in independent or exchangeable data settings. We develop an SVI algorithm to learn the parameters of hidden Markov models (HMMs) in a time-dependent data setting. The challenge in ...
متن کاملStatistical Inference in Hidden Markov Models Using k-Segment Constraints
Hidden Markov models (HMMs) are one of the most widely used statistical methods for analyzing sequence data. However, the reporting of output from HMMs has largely been restricted to the presentation of the most-probable (MAP) hidden state sequence, found via the Viterbi algorithm, or the sequence of most probable marginals using the forward-backward algorithm. In this article, we expand the am...
متن کاملBayesian inference for Hidden Markov Models
Hidden Markov Models can be considered an extension of mixture models, allowing for dependent observations. In a hierarchical Bayesian framework, we show how Reversible Jump Markov Chain Monte Carlo techniques can be used to estimate the parameters of a model, as well as the number of regimes. We consider a mixture of normal distributions characterized by different means and variances under eac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Physiology
سال: 2013
ISSN: 1472-6793
DOI: 10.1186/1472-6793-13-14